องค์ประกอบต่างๆเกี่ยวกับดาวฤกษ์

มาตรฐาน

ความส่องสว่างสัมบูรณ์

ความส่องสว่างสัมบูรณ์ ( (Absolute magnitude) เป็นการวัดความสว่างที่แท้จริงของดาวฤกษ์ โดยจินตนาการให้ดาวฤกษ์นั้นอยู่ที่ระยะห่างจากโลกออกไป 10 พาร์เซก หรือ 32.616 ปีแสง โดยดาวที่ห่างไปจากโลก 10 พาร์เซก จะมีมุมแพรัลแลกซ์ เป็น 0.1 พิลิปดา

การวัดความสว่างของดาวฤกษ์อีกแบบคือความส่องสว่างปรากฏซึ่งเป็นการวัดความสว่างของดาวบนท้องฟ้าเมื่อมองจากโลก

อย่างไรก็ตามแม้ความส่องสว่างปรากฏจะสามารถบอกอันดับความสว่างของดาวได้ แต่ก็ไม่สามารถบอกกำลังส่องสว่างที่แท้จริงของดาวฤกษ์ดวงนั้นๆ ได้อย่างถูกต้อง ดาวฤกษ์ที่ปรากฏให้เห็นความสว่างยามค่ำคืนน้อยกว่า แท้จริงแล้วอาจมีกำลังส่องสว่างมากกว่าดาวที่ปรากฏสุกใสอยู่บนท้องฟ้าได้ ซึ่งเป็นเพราะดาวนั้นอยู่ไกลจากโลกออกไปมากนั่นเอง

ค่าของความส่องสว่างสัมบูรณ์มีลักษณะเหมือนกับความส่องสว่างปรากฏ คือ ดวงดาวที่มีอันดับความสว่างต่างกัน 5 อันดับ จะมีความสว่างต่างกัน 100 เท่า คือ ดวงดาวที่มีความส่องสว่างสัมบูรณ์ต่างกัน 1 ความส่องสว่าง จะมีความสว่างต่างกัน                           เท่า

ความส่องสว่างปรากฏ

ความส่องสว่างปรากฏ (apparent magnitude) เป็นหน่วยวัดความสว่างของดาวฤกษ์ ดาวเคราะห์ หรือวัตถุท้องฟ้าอื่นในจักรวาล กล่าวอีกนัยหนึ่งคือปริมาณแสดงที่ได้รับจากวัตถุนั้น นิยามให้ความส่องสว่างปรากฏมีค่าเพิ่มขึ้น 5 หน่วยเมื่อความสว่างลดลงเหลือ 1 ใน 100 (นั่นคือเมื่อวัตถุเดียวกันแต่อยู่ไกลขึ้นเป็น 10 เท่า) หรือค่าความส่องสว่างปรากฏเพิ่มขึ้น 1 หน่วยเมื่อความสว่างลดลง 2.512 เท่า โดยที่ 2.512 คือรากที่ห้าของ 100 (1000.2)

ปริมาณแสงที่รับได้ จริง ๆ แล้วจะขึ้นอยู่กับความหนาของชั้นบรรยากาศในทิศทางการมองวัตถุ ดังนั้นความส่องสว่างปรากฏจึงปรับค่าให้ได้ความสว่างเมื่อผู้สังเกตอยู่นอกชั้นบรรยากาศ ยิ่งวัตถุมีแสงจางเท่าไหร่ค่าความส่องสว่างปรากฏก็ยิ่งมีค่ามากเท่านั้น

ระดับของความส่องสว่างปรากฏ

ความส่องสว่างปรากฏ

วัตถุท้องฟ้า

−26.73 ดวงอาทิตย์
−12.6 ดวงจันทร์เต็มดวง
−4.4 ความสว่างสูงสุดของ ดาวศุกร์
−2.8 ความสว่างสูงสุดของ ดาวอังคาร
−1.5 ดวงดาวที่สว่างที่สุดในย่านความยาวคลื่นที่ตามองเห็น: ดาวซิริอุส
−0.7 ดวงดาวที่สว่างเป็นอันดับสอง: ดาวคาโนปัส
0 ค่าศูนย์   เดิมเคยนิยามให้ใช้ค่าความสว่างของดาวเวกา
3.0 ความสว่างน้อยสุดที่มองเห็นได้ในเมือง
6.0 ความสว่างน้อยสุดที่มองเห็นได้ด้วยตาเปล่า
12.6 เควซาร์ที่สว่างที่สุด
27 ความสว่างน้อยสุดที่มองเห็นได้ด้วยกล้องโทรทรรศน์ขนาด   8 เมตรในย่านความยาวคลื่นที่ตามองเห็น
30 ความสว่างน้อยสุดที่มองเห็นได้ด้วยกล้องโทรทรรศน์ฮับเบิลในย่านความยาวคลื่นที่ตามองเห็น
38 ความสว่างน้อยสุดที่มองเห็นได้ด้วยกล้องโทรทรรศน์   OWL (อนาคตปี ค.ศ. 2020) ในย่านความยาวคลื่นที่ตามองเห็น

พารัลแลกซ์

พารัลแลกซ์ ( Parallax) คือลักษณะการเปลี่ยนแปลงตำแหน่งปรากฏ หรือความแตกต่างของตำแหน่งของวัตถุเมื่อมองผ่านมุมมองที่แตกต่างกัน สามารถวัดได้จากมุมของความเอียงระหว่างเส้นสังเกตทั้งสองเส้น คำนี้มีที่มาจากภาษากรีก  (parallaxis) หมายถึง “การเปลี่ยนแปลง”

วัตถุที่อยู่ใกล้ผู้สังเกตจะมีพารัลแลกซ์มากกว่าวัตถุที่อยู่ไกล พารัลแลกซ์จึงสามารถใช้ในการประเมินระยะห่างได้ด้วย ในทางดาราศาสตร์ พารัลแลกซ์เป็นกระบวนการทางตรงทางเดียวที่สามารถใช้ในการประเมินระยะห่างของวัตถุ (คือดาวฤกษ์) ที่อยู่พ้นออกไปจากระบบสุริยะได้ ดาวเทียมฮิปปาร์คอสได้ใช้เทคนิคนี้ในการสังเกตการณ์ดาวฤกษ์ใกล้เคียงแล้วกว่า 100,000 ดวง นี่เป็นวิธีพื้นฐานในการตรวจวัดวัตถุห่างไกลในทางดาราศาสตร์ด้วยเครื่องมือที่เรียกว่า บันไดระยะห่างของจักรวาล

ปรากฏการณ์พารัลแลกซ์ทำให้เกิดผลข้างเคียงต่อเครื่องมือสังเกตการณ์เชิงแสงหลายชนิด เช่นกล้องส่องทางไกล กล้องจุลทรรศน์ และกล้องแบบสะท้อนสองเลนส์ที่มองวัตถุจากมุมมองที่แตกต่างกันเล็กน้อย สัตว์หลายชนิดรวมถึงมนุษย์ มีตา 2 ตาที่เหลื่อมมุมสังเกตการณ์กันเล็กน้อย เพื่อให้สามารถใช้ปรากฏการณ์พารัลแลกซ์ในการประเมินความลึกของภาพได้ กระบวนการเช่นนี้เรียกชื่อว่า stereopsis

อุณหภูมิและสีของดาวฤกษ์

ดาวฤกษ์ที่มีมากมายบนท้องฟ้า  จะมีสีและอุณหภูมิแตกต่างกันสีของดาวฤกษ์  สามารถบอกถึงอุณหภูมิด้วย  เช่น  ดาวฤกษ์ที่มีอุณหภูมิต่ำจะมีสีข้อนข้างแดง  และดาวฤกษ์ที่มีอุณหภูมิสูงจะมีสีขาวหรือสีขาวอมน้ำเงิน

ตาราง แสดงสีและอุณหภูมิผิวของดาวฤกษ์ชนิดต่างๆ

ชนิดของสเปกตรัม  

สีของดาว

อุณหภูมิผิว(เคลวิน)

ตัวอย่างดาวกฤษ์

O

น้ำเงิน

35,000

ดาวเซตานายพรานในกลุ่มดาวนายพราน

B

ขาวน้ำเงิน

25,000-12,000

ดาวอะเคอร์นาร์ในกลุ่มดาวกระดูกงูเรือ

A

ขาว

10,000-8,000

ดาวหางหงส์ในกลุ่มดาวหงส์

F

เหลือง-ขาว

7,500-6,000

ดาวโปรซิออนในกลุ่มดาวสุนัขเล็ก

G

เหลือง

6,000-4,200

ดวงอาทิตย์

K

ส้ม

5,000-3,000

ดาวแก้วในกลุ่มดาวคนเลี้ยงสัตว์

M

ส้มแดง

  3,200-3,000

ดาวปาริชาตในกลุ่มดาวแมงป่อง

อายุ

ดาวฤกษ์ส่วนใหญ่มีอายุอยู่ระหว่าง 1 พันล้านถึง 1 หมื่นล้านปี มีบ้างบางดวงที่อาจมีอายุถึง 13,700 ล้านปีซึ่งเป็นอายุโดยประมาณของเอกภพ ดาวฤกษ์ที่เก่าแก่ที่สุดเท่าที่ค้นพบขณะนี้คือ HE 1523-0901 ซึ่งมีอายุโดยประมาณ 13,200 ล้านปี

ยิ่งดาวฤกษ์มีมวลมากเท่าใด ก็จะยิ่งมีอายุสั้นเท่านั้น ทั้งนี้เนื่องจากดาวฤกษ์ที่มีมวลมากจะมีแรงดันภายในแกนกลางที่สูงกว่า ทำให้การเผาผลาญไฮโดรเจนเป็นไปในอัตราที่สูงกว่า ดาวฤกษ์มวลมากที่สุดมีอายุเฉลี่ยเท่าที่พบราว 1 ล้านปี ส่วนดาวฤกษ์ที่มีมวลน้อยที่สุด (ดาวแคระแดง) เผาผลาญพลังงานภายในตัวเองในอัตราที่ต่ำมาก และมีอายุอยู่ยาวนานตั้งแต่หลักพันล้านจนถึงหมื่นล้านปี

องค์ประกอบทางเคมี

เมื่อแรกที่ดาวฤกษ์ก่อตัวขึ้น มันประกอบด้วยไฮโดรเจน 71% และฮีเลียม 27% โดยมวล

กับสัดส่วนของธาตุหนักอีกเล็กน้อย โดยทั่วไปเราวัดปริมาณของธาตุหนักในรูปขององค์ประกอบเหล็กในชั้นบรรยากาศของดาวฤกษ์ เนื่องจากเหล็กเป็นธาตุพื้นฐาน และการตรวจวัดเส้นการดูดซับของมันก็ทำได้ง่าย ในเมฆโมเลกุลอันเป็นต้นกำเนิดของดาวฤกษ์จะอุดมไปด้วยธาตุหนักมากมายที่ได้มาจากซูเปอร์โนวาหรือการระเบิดของดาวฤกษ์รุ่นแรก ดังนั้นการตรวจวัดองค์ประกอบทางเคมีของดาวฤกษ์จึงสามารถใช้ประเมินอายุของมันได้ เราอาจใช้องค์ประกอบธาตุหนักในการวินิจฉัยได้ด้วยว่าดาวฤกษ์ดวงนั้นน่าจะมีระบบดาวเคราะห์ของตนเองหรือไม่

ดาวฤกษ์ที่มีองค์ประกอบธาตุเหล็กต่ำที่สุดเท่าที่เคยตรวจพบ คือดาวแคระ HE1327-2326 โดยมีองค์ประกอบเหล็กเพียง 1 ใน 200,000 ส่วนของดวงอาทิตย์ ในด้านตรงข้าม ดาวฤกษ์ที่มีโลหะธาตุสูงมากคือ  Leonis ซึ่งมีธาตุเหล็กสูงกว่าดวงอาทิตย์เกือบสองเท่า อีกดวงหนึ่งคือ 14 Herculis ซึ่งมีดาวเคราะห์เป็นของตนเองด้วย มีธาตุเหล็กสูงกว่าดวงอาทิตย์เกือบสามเท่านอกจากนี้ยังมีดาวฤกษ์ที่มีองค์ประกอบทางเคมีอันแปลกประหลาดอีกหลายดวงซึ่งสังเกตได้จากเส้นสเปกตรัมของมัน โดยที่มีทั้งโครเมียมกับธาตุหายากบนโลก

เส้นผ่านศูนย์กลาง

ดาวฤกษ์ต่างๆ อยู่ห่างจากโลกมาก ดังนั้นนอกจากดวงอาทิตย์แล้ว เราจึงมองเห็นดาวฤกษ์ต่างๆ เป็นเพียงจุดแสงเล็กๆ ในเวลากลางคืน ส่องแสงกระพริบวิบวับเนื่องมาจากผลจากชั้นบรรยากาศของโลกดวงอาทิตย์ก็เป็นดาวฤกษ์ดวงหนึ่ง แต่อยู่ใกล้กับโลกมากพอจะปรากฏเห็นเป็นรูปวงกลม และให้แสงสว่างในเวลากลางวัน นอกเหนือจากดวงอาทิตย์แล้ว ดาวฤกษ์ที่มีขนาดปรากฏใหญ่ที่สุดคือ R Doradus ซึ่งมีเส้นผ่านศูนย์กลางเชิงมุมเพียง 0.057 พิลิปดา

ภาพของดาวฤกษ์ส่วนมากที่มองเห็นและวัดได้ในขนาดเชิงมุมจะเล็กมากจนต้องอาศัยการสังเกตการณ์บนโลกด้วยกล้องโทรทรรศน์ บางครั้งต้องใช้กล้องโทรทรรศน์ในเทคนิค interferometer เพื่อช่วยขยายภาพ เทคนิคอีกประการหนึ่งในการตรวจวัดขนาดเชิงมุมของดาวฤกษ์คือ occultation โดยการตรวจวัดความส่องสว่างของดาวที่ลดลงเนื่องมาจากความสว่างของดวงจันทร์ (หรือจากความส่องสว่างที่เพิ่มขึ้นเมื่อมันปรากฏขึ้นใหม่) แล้วจึงนำมาคำนวณขนาดเชิงมุมของดาวฤกษ์นั้น

ขนาดของดาวฤกษ์เรียงตามลำดับตั้งแต่เล็กสุดคือ ดาวนิวตรอน มีขนาดเส้นผ่านศูนย์กลางระหว่าง 20 ถึง 40 กิโลเมตร ไปจนถึงดาวยักษ์ใหญ่เช่น ดาวบีเทลจุสในกลุ่มดาวนายพราน ซึ่งมีเส้นผ่านศูนย์กลางมากกว่าดวงอาทิตย์ราว 650 เท่า คือกว่า 900 ล้านกิโลเมตร แต่ดาวบีเทลจุสยังมีความหนาแน่นต่ำกว่าดวงอาทิตย์ของเรา

การเคลื่อนที่

ลักษณะการเคลื่อนที่ของดาวฤกษ์เมื่อเปรียบเทียบกับดวงอาทิตย์ของเรา สามารถให้ข้อมูลที่เป็นประโยชน์อย่างยิ่งในการเรียนรู้ถึงจุดกำเนิดและอายุของดาว รวมไปถึงโครงสร้างและวิวัฒนาการของดาราจักรโดยรอบ องค์ประกอบการเคลื่อนที่ของดาวฤกษ์ประกอบด้วยความเร็วแนวเล็ง ที่วิ่งเข้าหาหรือวิ่งออกจากดวงอาทิตย์ และการเคลื่อนที่เชิงมุมที่เรียกว่า การเคลื่อนที่เฉพาะ

การตรวจวัดความเร็วแนวเล็งทำได้โดยโดยอาศัยการเคลื่อนดอปเปลอร์ของเส้นสเปกตรัมของดาว หน่วยที่วัดเป็นกิโลเมตรต่อวินาที การตรวจวัดการเคลื่อนที่เฉพาะของดาวฤกษ์ทำได้จากเครื่องมือตรวจวัดทางดาราศาสตร์ที่มีความแม่นยำสูง หน่วยที่วัดเป็นมิลลิพิลิปดาต่อปี เมื่ออาศัยการตรวจสอบพารัลแลกซ์ของดาวฤกษ์ เราจึงสามารถแปลงการเคลื่อนที่เฉพาะให้ไปเป็นหน่วยของความเร็วได้ ดาวฤกษ์ที่มีค่าการเคลื่อนที่เฉพาะสูงมีแนวโน้มที่จะอยู่ใกล้ดวงอาทิตย์มากกว่าดาวดวงอื่น จึงเป็นตัวแทนที่ดีสำหรับใช้ตรวจวัดพารัลแลกซ์ของดาวได้

เมื่อเราทราบอัตราการเคลื่อนที่ทั้งสองตัวนี้แล้ว ก็จะสามารถคำนวณความเร็วในการเคลื่อนที่อวกาศของดาวฤกษ์ดวงนั้นเปรียบเทียบกับดวงอาทิตย์หรือดาราจักรได้ ในบรรดาดาวฤกษ์ใกล้เคียงที่ตรวจวัด พบว่าดาวฤกษ์ชนิดดารากร 1 มีความเร็วต่ำกว่าดาวฤกษ์ที่มีอายุมากกว่าเช่น ดาวฤกษ์ชนิดดารากร 2 ดาวฤกษ์ในกลุ่มหลังมีระนาบโคจรที่ค่อนข้างใกล้เคียงกับระนาบดาราจักร เมื่อเปรียบเทียบจลนศาสตร์ของดาวฤกษ์ที่อยู่ในบริเวณใกล้เคียงกัน ทำให้เราสามารถจัดกลุ่มของดาวฤกษ์ได้ ซึ่งมีแนวโน้มที่ดาวฤกษ์ในกลุ่มเดียวกันจะกำเนิดมาจากเมฆโมเลกุลชุดเดียวกัน

สนามแม่เหล็ก

สนามแม่เหล็กของดาวฤกษ์เกิดขึ้นจากบริเวณภายในของดาวที่ซึ่งเกิดการไหลเวียนของการพาความร้อน การเคลื่อนที่นี้ทำให้ประจุในพลาสมาทำตัวเสมือนเป็นเครื่องกำเนิดไฟฟ้าแบบไดนาโม ซึ่งทำให้เกิดสนามแม่เหล็กแผ่ขยายออกมาภายนอกดวงดาว กำลังของสนามแม่เหล็กนี้แปรตามขนาดของมวลและองค์ประกอบของดาว ส่วนขนาดของกิจกรรมพื้นผิวสนามแม่เหล็กก็ขึ้นกับอัตราการหมุนรอบตัวเองของดาวฤกษ์นั้น กิจกรรมที่พื้นผิวสนามแม่เหล็กนี้ทำให้เกิดจุดบนดาวฤกษ์ อันเป็นบริเวณที่มีสนามแม่เหล็กเข้มกว่าปกติและมีอุณหภูมิเฉลี่ยต่ำกว่าปกติ วงโคโรนาคือแนวสนามแม่เหล็กโค้งที่แผ่เข้าไปในโคโรนา ส่วนเปลวดาวฤกษ์คือการระเบิดของอนุภาคพลังงานสูงที่แผ่ออกมาเนื่องจากกิจกรรมพื้นผิวสนามแม่เหล็ก

ดาวฤกษ์ที่อายุน้อยและหมุนรอบตัวเองด้วยความเร็วสูงมีแนวโน้มจะมีกิจกรรมพื้นผิวในระดับที่สูงเนื่องมาจากกำลังสนามแม่เหล็กของมัน สนามแม่เหล็กของดาวยังส่งอิทธิพลต่อลมดาวฤกษ์ด้วย โดยทำหน้าที่เหมือนตัวหน่วง ทำให้อัตราการหมุนรอบตัวเองของดาวฤกษ์ช้าลงเมื่อดาวมีอายุมากขึ้น ดังนั้น ดาวฤกษ์ที่มีอายุมากกว่าเช่นดวงอาทิตย์ของเราจึงมีอัตราการหมุนรอบตัวเองที่ต่ำกว่า และมีกิจกรรมพื้นผิวที่น้อยกว่าดาวฤกษ์อายุเยาว์ ระดับของกิจกรรมพื้นผิวของดาวฤกษ์ที่หมุนรอบตัวเองช้าค่อนข้างเปลี่ยนแปลงเป็นวงรอบและอาจหยุดกิจกรรมบางอย่างไปชั่วระยะเวลาหนึ่ง ช่วงเวลานี้เรียกว่า ช่วงต่ำสุดมอนเดอร์ ซึ่งดวงอาทิตย์ก็เคยผ่านระยะเวลานี้เป็นเวลา 70 ปี ที่ไม่มีกิจกรรมใดๆ เกี่ยวกับจุดบนดวงอาทิตย์เกิดขึ้นเลย

มวล

หนึ่งในบรรดาดาวฤกษ์ที่มีมวลมากที่สุดที่รู้จักกัน คือ Eta Carinae[95] ซึ่งมีมวลมากกว่ามวลดวงอาทิตย์ราว 100-150 เท่า ช่วงอายุของมันสั้นมาก เพียงประมาณไม่กี่ล้านปีเท่านั้น ผลจากการศึกษากระจุกดาวอาร์เชสเมื่อเร็ว ๆ นี้แสดงให้เห็นว่า มวลขนาด 150 เท่าของมวลดวงอาทิตย์จัดเป็นขีดจำกัดสูงสุดของดาวฤกษ์ในเอกภพในยุคปัจจุบัน สาเหตุของขีดจำกัดนี้ยังไม่เป็นที่ทราบแน่ชัด แต่น่าจะมีความเกี่ยวข้องส่วนหนึ่งกับความส่องสว่างเอ็ดดิงตัน ซึ่งอธิบายถึงค่าความส่องสว่างสูงสุดที่สามารถแผ่ผ่านบรรยากาศของดาวฤกษ์ได้โดยไม่ยิงพวยแก๊สออกไปในอวกาศ

ดาวฤกษ์กลุ่มแรก ๆ ที่ก่อตัวขึ้นหลังจากเกิดบิกแบงอาจจะมีมวลมากกว่านั้น เช่น 300 เท่าของมวลดวงอาทิตย์ หรือสูงกว่า ทั้งนี้เนื่องจากมันไม่มีองค์ประกอบของธาตุที่หนักกว่าลิเธียมเลย อย่างไรก็ดี ดาวฤกษ์มวลมากยิ่งยวดเหล่านี้ (หรือดาวฤกษ์ชนิด population III) ได้สูญสลายไปจนหมดแล้ว มีแต่เพียงทฤษฎีที่กล่าวถึงเท่านั้น

ดาว AB Doradus C ซึ่งเป็นดาวคู่ของ AB Doradus A มีมวลประมาณ 93 เท่าของมวลดาวพฤหัสบดี จัดว่าเป็นดาวฤกษ์ที่เล็กที่สุดเท่าที่รู้จักซึ่งยังคงมีปฏิกิริยานิวเคลียร์ฟิวชั่นดำเนินอยู่ภายในแกนกลาง ด้วยลักษณะของดาวที่มีค่าความเป็นโลหะคล้ายคลึงกับดวงอาทิตย์ ตามทฤษฎีแล้ว มวลน้อยที่สุดของดาวฤกษ์ที่ยังสามารถดำรงสภาวะนิวเคลียร์ฟิวชั่นในแกนกลางได้ คือประมาณ 75 เท่าของมวลดาวพฤหัสบดี ทว่ามันจะมีค่าความเป็นโลหะต่ำมาก ผลการศึกษาดาวฤกษ์ที่จางแสงที่สุดเมื่อไม่นานมานี้ พบว่าขนาดที่เล็กที่สุดที่เป็นไปได้ของดาวฤกษ์อยู่ที่ประมาณ 8.3% ของมวลดวงอาทิตย์ หรือประมาณ 87 เท่าของมวลดาวพฤหัสบดี วัตถุที่เล็กกว่านี้จะเรียกว่า ดาวแคระน้ำตาล ซึ่งเป็นดาวที่มีลักษณะเทาอันขุ่นมัว อยู่กึ่งกลางระหว่างดาวฤกษ์กับดาวแก๊สยักษ์

ความสัมพันธ์ระหว่างรัศมีของดาวกับมวลของดาว บอกได้จากแรงโน้มถ่วงพื้นผิว ดาวฤกษ์ขนาดยักษ์จะมีแรงโน้มถ่วงพื้นผิวน้อยกว่าดาวฤกษ์ในแถบลำดับหลัก และในทางกลับกันดาวที่มีแรงโน้มถ่วงมากคือดาวที่กำลังเสื่อมสลายและมีขนาดเล็กเช่นดาวแคระขาว แรงโน้มถ่วงพื้นผิวมีอิทธิพลต่อลักษณะปรากฏของสเปกตรัมของดาวฤกษ์ โดยที่ดาวซึ่งมีแรงโน้มถ่วงสูงกว่าจะมีเส้นการดูดซับพลังงานที่กว้างกว่า

การหมุนรอบตัวเอง

เราสามารถประมาณอัตราการหมุนรอบตัวเองของดาวฤกษ์ได้โดยอาศัยวิธีการวัดสเปกโตรสโกปี หรือจะวัดให้แม่นยำยิ่งขึ้นได้โดยการติดตามอัตราการหมุนของจุดบนดาวฤกษ์ ดาวฤกษ์ที่มีอายุน้อยจะมีอัตราการหมุนรอบตัวเองที่เร็วกว่าประมาณ 100 กม/วินาทีที่แนวศูนย์สูตร ดาวฤกษ์ชนิด B เช่นดาว Achernarมีความเร็วการหมุนรอบตัวเองที่เส้นศูนย์สูตรประมาณ 225 กม/วินาทีหรือมากกว่านั้น ซึ่งทำให้มันมีเส้นผ่านศูนย์กลางบริเวณศูนย์สูตรใหญ่กว่าระยะห่างระหว่างขั้วถึงกว่า 50% อัตราการหมุนรอบตัวเองนี้ต่ำกว่าค่าความเร็ววิกฤตที่ 300 กม/วินาทีเพียงเล็กน้อย ซึ่งเป็นอัตราเร็วที่จะทำให้ดาวฤกษ์แตกสลายลง สำหรับดวงอาทิตย์ของเรามีอัตราหมุนรอบตัวเองรอบละ 25-35 วัน หรือความเร็วที่แนวศูนย์สูตรประมาณ 1.994 กม/วินาที สนามแม่เหล็กของดาวฤกษ์กับลมดาวฤกษ์ต่างมีผลที่ช่วยให้อัตราการหมุนรอบตัวเองของดาวฤกษ์ในแถบลำดับหลักช้าลงอย่างมีนัยสำคัญ

ดาวฤกษ์ที่กำลังเสื่อมสลายจะหดตัวลงเป็นมวลขนาดเล็กหนาแน่นมาก ซึ่งเป็นผลให้การหมุนรอบตัวเองของมันดำเนินไปในอัตราสูง แต่เมื่อเปรียบกับอัตราที่ควรจะเป็นเมื่อคิดจากการรักษาโมเมนตัมเชิงมุมเอาไว้ก็ยังถือว่าค่อนข้างต่ำ โมเมนตัมเชิงมุมของดาวฤกษ์สูญหายไปเป็นจำนวนมากเนื่องจากการสูญเสียมวลของดาวฤกษ์ไปกับลมดาวฤกษ์ ถึงกระนั้น อัตราการหมุนรอบตัวเองของพัลซาร์ก็ยังสูงมาก ตัวอย่างเช่นพัลซาร์ที่อยู่ ณ ใจกลางของเนบิวลาปู หมุนรอบตัวเองในอัตรา 30 รอบต่อวินาที อัตราการหมุนรอบตัวเองของพัลซาร์จะค่อยๆ ลดลงเนื่องมาจากการแผ่รังสีของดาว

การแผ่รังสี

พลังงานที่เกิดขึ้นเป็นผลพลอยได้จากปฏิกิริยานิวเคลียร์ฟิวชั่นภายในดาวฤกษ์ จะแผ่ตัวออกไปในอวกาศในรูปของรังสีคลื่นแม่เหล็กไฟฟ้า และรังสีอนุภาคซึ่งแผ่ออกไปในรูปของลมดาวฤกษ์ (เป็นสายธารกระแสอนุภาคของประจุไฟฟ้าที่เคลื่อนที่ไปอย่างคงที่ ประกอบด้วยฟรีโปรตอน อนุภาคอัลฟาและอนุภาคเบตา ที่ระเหยออกมาจากชั้นผิวเปลือกนอกของดาวฤกษ์) รวมถึงกระแสนิวตริโนที่เกิดจากแกนกลางของดาวฤกษ์

การกำเนิดพลังงานในแกนกลางของดาวเป็นต้นกำเนิดของแสงสว่างมหาศาลของดาวนั้น ทุกครั้งที่นิวเคลียสของธาตุตั้งแต่ 2 ชนิดหรือมากกว่าหลอมละลายเข้าด้วยกัน จะทำให้เกิดนิวเคลียสอะตอมของธาตุใหม่ที่หนักกว่าเดิม ทำให้ปลดปล่อยโฟตอนรังสีแกมมาออกมาจากปฏิกิริยานิวเคลียร์ฟิวชั่น เมื่อพลังงานที่เกิดขึ้นนี้แผ่ตัวออกมาจนถึงเปลือกนอกของดาว มันจะเปลี่ยนรูปไปเป็นพลังงานคลื่นแม่เหล็กไฟฟ้าในรูปแบบต่างๆ รวมถึงแสงที่ตามองเห็น

สีของดาวฤกษ์ซึ่งระบุได้จากความถี่สูงสุดของแสงที่ตามองเห็น ขึ้นอยู่กับอุณหภูมิของชั้นผิวรอบนอกของดาวฤกษ์และโฟโตสเฟียร์ของดาวนอกจากแสงที่ตามองเห็นแล้ว ดาวฤกษ์ยังแผ่รังสีคลื่นแม่เหล็กไฟฟ้ารูปแบบอื่นๆ ออกมาอีกที่ตาของมนุษย์มองไม่เห็น ว่าที่จริงแล้วรังสีคลื่นแม่เหล็กไฟฟ้าที่แผ่ออกมาจากดาวฤกษ์นั้นแผ่ครอบคลุมย่านสเปกตรัมคลื่นแม่เหล็กไฟฟ้าทั้งหมด ตั้งแต่ช่วงคลื่นยาวที่สุดเช่นคลื่นวิทยุหรืออินฟราเรด ไปจนถึงช่วงคลื่นสั้นที่สุดเช่นอัลตราไวโอเลต รังสีเอกซ์ และรังสีแกมมา องค์ประกอบการแผ่รังสีคลื่นแม่เหล็กไฟฟ้าของดาวฤกษ์ทั้งส่วนที่ตามองเห็นและมองไม่เห็นล้วนมีความสำคัญเหมือนๆ กัน

จากสเปกตรัมของดาวฤกษ์นี้ นักดาราศาสตร์จะสามารถบอกค่าอุณหภูมิพื้นผิวของดาว แรงโน้มถ่วงพื้นผิว ค่าความเป็นโลหะ และความเร็วในการหมุนรอบตัวเองของดาว หากเราทราบระยะห่างของดาวฤกษ์นั้นด้วย เช่นทราบจากการตรวจวัดพารัลแลกซ์ เราก็จะสามารถคำนวณความส่องสว่างของดาวฤกษ์นั้นได้ จากนั้นจึงใช้แบบจำลองของดาวฤกษ์ในการประมาณการค่ามวล รัศมี แรงโน้มถ่วงพื้นผิว และอัตราการหมุนรอบตัวเอง (ดาวฤกษ์ในระบบดาวคู่จะสามารถตรวจวัดมวลได้โดยตรง สำหรับมวลของดาวฤกษ์เดี่ยวจะประเมินได้จากเทคนิคไมโครเลนส์ของแรงโน้มถ่วง) จากตัวแปรต่างๆ เหล่านี้จึงทำให้นักดาราศาสตร์สามารถประเมินอายุของดาวฤกษ์ได้

                                                                  โครงสร้าง

โครงสร้างภายในของดาวฤกษ์ที่เสถียรจะอยู่ในสภาวะสมดุลอุทกสถิต คือแรงกระทำจากปริมาตรขนาดเล็กแต่ละชุดที่กระทำต่อกันและกันจะมีค่าเท่ากันพอดี สมดุลของแรงประกอบด้วยแรงดึงเข้าภายในที่เกิดจากแรงโน้มถ่วง และแรงผลักออกภายนอกที่เกิดจากแรงดันภายในของดาวฤกษ์ ระดับแรงดันภายในนี้เกิดขึ้นจากระดับอุณหภูมิของพลาสมาที่ค่อยๆ ลดหลั่นกัน โดยที่ด้านนอกของดาวฤกษ์จะมีอุณหภูมิต่ำกว่าด้านใน อุณหภูมิที่ใจกลางของดาวฤกษ์ในแถบลำดับหลักหรือของดาวยักษ์จะมีค่าอย่างน้อย 107 K ผลของอุณหภูมิและแรงดันอันเกิดจากการเผาผลาญไฮโดรเจนที่แกนกลางดาวฤกษ์ในแถบลำดับหลักนี้มีเพียงพอที่จะทำให้เกิดปฏิกิริยานิวเคลียร์ฟิวชัน และสร้างพลังงานได้มากพอจะต้านทานการยุบตัวของดาวฤกษ์ได้

เมื่อนิวเคลียสอะตอมถูกหลอมเหลวที่ในใจกลางดาว มันจะแผ่พลังงานออกมาในรูปของรังสีแกมมา โฟตอนเหล่านี้ทำปฏิกิริยากับพลาสมาที่อยู่รอบๆ และเพิ่มพูนพลังงานความร้อนให้กับแกนกลางมากยิ่งขึ้น ดาวฤกษ์ในแถบลำดับหลักที่กำลังแปลงไฮโดรเจนไปเป็นฮีเลียม จะค่อยๆ เพิ่มปริมาณฮีเลียมในแกนกลางขึ้นอย่างช้าๆ ในอัตราเร็วค่อนข้างคงที่ ครั้นเมื่อปริมาณฮีเลียมมีเพิ่มขึ้นเรื่อยๆ จนการสร้างพลังงานที่แกนกลางหยุดชะงักไป ดาวฤกษ์ที่มีมวลมากกว่า 0.4 เท่าของมวลดวงอาทิตย์จะมีพื้นผิวรอบนอกขยายตัวใหญ่ขึ้นห่อหุ้มฮีเลียมในแกนกลางเอาไว้

นอกเหนือจากสภาวะสมดุลอุทกสถิตที่อยู่ภายในดาวฤกษ์ที่เสถียร ยังมีสมดุลพลังงานภายในหรือที่เรียกว่า สมดุลความร้อน กล่าวคือการแพร่กระจายอุณหภูมิภายในตามแนวรัศมีภายในดาวทำให้เกิดกระแสพลังงานไหลจากภายในออกสู่ภายนอก กระแสพลังงานที่ไหลผ่านชั้นผิวของดาวฤกษ์ออกมาในแต่ละชั้นจะมีปริมาณเท่ากับกระแสพลังงานที่ไหลเข้ามาจากชั้นผิวก่อนหน้า

เขตแผ่รังสี คือบริเวณภายในดาวฤกษ์ที่ซึ่งมีการถ่ายเทรังสีอย่างมีประสิทธิผลพอจะทำให้เกิดการไหลของกระแสพลังงานได้ ในย่านนี้จะไม่มีการหมุนเวียนของพลาสมา และมวลต่างๆ ล้วนหยุดนิ่ง หากไม่มีสภาวะนี้เกิดขึ้น พลาสมาจะเกิดการปั่นป่วนและเกิดกระบวนการพาความร้อนขึ้น ทำให้เกิดเป็นย่านเรียกว่าเขตพาความร้อน ลักษณะเช่นนี้อาจเกิดขึ้นได้ในบริเวณที่มีกระแสพลังงานไหลเวียนสูงมาก เช่นบริเวณใกล้แกนกลางของดาวหรือบริเวณที่มีการส่องสว่างสูงมากเช่นที่บริเวณชั้นผิวรอบนอก

ลักษณะการพาความร้อนที่เกิดขึ้นบนชั้นผิวรอบนอกของดาวฤกษ์บนแถบลำดับหลักขึ้นอยู่กับมวลของดาวฤกษ์นั้นๆ ดาวฤกษ์ที่มีมวลมากกว่าดวงอาทิตย์หลายๆ เท่าจะมีเขตพาความร้อนลึกลงไปภายในดาวมากและมีเขตแผ่รังสีที่ชั้นเปลือกนอก ขณะที่ดาวฤกษ์ขนาดเล็กเช่นดวงอาทิตย์จะมีลักษณะตรงกันข้าม โดยมีเขตพาความร้อนอยู่ที่ชั้นเปลือกนอกแทนดาวแคระแดงที่มีมวลน้อยกว่า 0.4 เท่าของมวลดวงอาทิตย์จะมีเขตพาความร้อนแทบทั้งดวง ซึ่งทำให้มันไม่สามารถสะสมฮีเลียมที่แกนกลางได้สำหรับดาวฤกษ์ส่วนใหญ่จะมีเขตพาความร้อนที่เปลี่ยนแปลงไปเรื่อยๆ ตามอายุของดาว และตามองค์ประกอบภายในของดาวที่เปลี่ยนแปลงไป

ส่วนประกอบของดาวฤกษ์ที่ผู้สังเกตสามารถมองเห็นได้ เรียกว่า โฟโตสเฟียร์ เป็นชั้นเปลือกที่ซึ่งพลาสมาของดาวฤกษ์กลายสภาพเป็นโฟตอนของแสงจากจุดนี้ พลังงานที่กำเนิดจากแกนกลางของดาวจะแพร่ออกไปสู่อวกาศอย่างอิสระ ในบริเวณโฟโตสเฟียร์นี้เองที่ปรากฏจุดดับบนดวงอาทิตย์หรือพื้นที่ที่อุณหภูมิต่ำกว่าอุณหภูมิเฉลี่ยตามปกติ

เหนือกว่าชั้นของโฟโตสเฟียร์จะเป็นชั้นบรรยากาศของดาวฤกษ์ สำหรับดาวฤกษ์บนแถบลำดับหลักเช่นดวงอาทิตย์ ชั้นบรรยากาศต่ำที่สุดคือชั้นโครโมสเฟียร์บางๆ ซึ่งเป็นจุดเกิดของสปิคูลและเป็นจุดกำเนิดเปลวดาวฤกษ์ ล้อมรอบด้วยชั้นเปลี่ยนผ่านซึ่งอุณหภูมิจะเพิ่มสูงขึ้นอย่างรวดเร็วในระยะทางเพียง 100 กิโลเมตรโดยประมาณ พ้นจากชั้นนี้จึงเป็นโคโรนา ซึ่งเป็นพลาสมาความร้อนสูงมวลมหาศาลที่พุ่งผ่านออกไปภายนอกเป็นระยะทางหลายล้านกิโลเมตร ดูเหมือนว่า โคโรนาจะมีส่วนเกี่ยวข้องกับการที่ดาวฤกษ์มีย่านการพาความร้อนอยู่ที่ชั้นเปลือกนอกของพื้นผิว โคโรนามีอุณหภูมิที่สูงมาก แต่กลับให้กำเนิดแสงสว่างเพียงเล็กน้อย เราจะสามารถมองเห็นย่านโคโรนาของดวงอาทิตย์ได้ในเวลาที่เกิดสุริยคราสเท่านั้น

พ้นจากโคโรนา เป็นอนุภาคพลาสมาที่เป็นต้นกำเนิดลมสุริยะแผ่กระจายออกไปจากดาวฤกษ์ กว้างไกลออกไปจนกระทั่งมันปะทะกับมวลสารระหว่างดาวสำหรับดวงอาทิตย์ อาณาบริเวณที่ลมสุริยะมีอิทธิพลกว้างไกลออกไปเป็นรูปทรงคล้ายลูกโป่ง เรียกชื่อย่านภายใต้อิทธิพลของลมสุริยะนี้ว่า เฮลิโอสเฟียร์

Advertisements

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out /  เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out /  เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out /  เปลี่ยนแปลง )

Connecting to %s